
MKNOD 1
ID: 780-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

MKNOD
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-02

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 7541 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Creation

Location • sys/stat.h

Description The mknod function creates a new file (or directory
or special file) called pathname with theMode as the
mode. The file type and permissions of the new file
are initialized from mode. mknod() is often used to
create device files.

mknod() is vulnerable to TOCTOU attacks.

A call to mknod() should be flagged if the first
argument (the file name) is used previously in a
check-category call.

APIs Function Name Comments

mknod use

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

The mknod() call is a use-category call, which when
preceded by a check-category call can be indicative
of a TOCTOU vulnerability.

A TOCTOU attack in regards to mknod() can occur,
for example, when

a. A check for the existence of a filename (check
call) occurs

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

MKNOD 2
ID: 780-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

b. mknod() is executed

Between a and b, an attacker could, for example,
link the target directory/file (the one to be opened)
to a different known directory or file.The subsequent
mknod() call would either fail or have unexpected
results or behavior.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applicable to all
mknod() calls.

Utilize a file
descriptor
version of
check and use
functions.

Effective.

Generally
applicable to all
mknod() calls.

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the
underlying
issue of the
execution of
a function on
a resource
whose state and
identity can
not be assured,
but it does help
to limit the
false sense of
security given
by the check.

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.

Generally
applicable to all
mknod() calls.

Limit the
interleaving
of operations
on files from
multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable to all
mknod() calls.

Limit the spread
of time (cycles)
between the
"check" and
"use" of a
resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more

MKNOD 3
ID: 780-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

difficult to
exploit.

Generally
applicable to all
mknod() calls.

Recheck the
resource after
the use call
to verify that
the action
was taken
appropriately.

Effective in
some cases.

Signature Details int mknod (const char *path , mode_t mode, dev_t
dev)

Examples of Incorrect Code /* Same as positive, except a
check call has been added */

#include "sys/types.h"
#include "sys/stat.h"

dev_t dev;
int status;
int check_status;
struct stat statbuf;
...
check_status=stat("/home/cnd/
mod_done", &statbuf);

status = mknod("/home/cnd/
mod_done", S_IFIFO | S_IWUSR |
S_IRUSR | S_IRGRP | S_IROTH,
dev);

Examples of Corrected Code /* The following example shows
how to create a FIFO special file
named /home/cnd/mod_done, with */
/* read/write permissions for
owner, and with read permissions
for group and others. */
/* This would be considered a
'better' example because no check
call exists. Given however that */
/* mknod is often used to create
device files, so check calls may
be common. This class of solution
then */
/* may not be very appropriate.
*/

#include "sys/types.h"
#include "sys/stat.h"

dev_t dev;
int status;
...
status = mknod("/home/cnd/
mod_done", S_IFIFO | S_IWUSR |

MKNOD 4
ID: 780-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

S_IRUSR | S_IRGRP | S_IROTH,
dev);

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, pg.
222

• UNIX man page for mknod()

• The IEEE and The Open Group. “mknod -
make a directory, a special file, or a regular

file2.” The Open Group Base Specifications
Issue 6; IEEE Std 1003.1, 2004 Edition (2004).

Recommended Resource

Discriminant Set Operating System • UNIX

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://www.opengroup.org/onlinepubs/009695399/functions/mknod.html
http://www.opengroup.org/onlinepubs/009695399/functions/mknod.html
http://www.opengroup.org/onlinepubs/009695399/functions/mknod.html
mailto:copyright@cigital.com

